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Consider a two-dimensional bubble moving with speed U through an unbounded, 
inviscid fluid. Let all lengths be normalized by T / p V  where T is the surface tension. 
Then the shape of the bubble depends on a single parameter r = 2Ap/pUa - 1,  where 
Ap = pb-pm is the difference between the bubble pressure and the ambient pressure. 
We obtain solutions for the bubble shape over the whole range of r-values that are 
physically relevant. The formulation involves a mapping from an auxiliary circle 
plane [where the flow field is known. The problem then reduces to solving an infinite 
set of nonlinear algebraic equations for the coefficients in the mapping function. 

To a first approximation, when r-t co, the bubble takes an elliptical shape of 
aspect ratio (1  +;I-l)/( 1 -;I-1) flattened in the flow direction. The solution correct 
to order r5 is then obtained which is fairly accurate for r as low as 2. When 
r = 0 the exact, nonlinear solution for the bubble shape is given by x = $($ cos 4 -& cos 
34), y = $(gsin$+&sin3q5). We can then obtain a perturbation solution for r+O 
correct to order P. This solution, useful in the range 0.75 > r > -0.4537, even gives 
reasonable descriptions of non-convex bubble shapes for r < 0 down to the pinch-off 
limit Pr when the bubble ceases to be simply connected. It is remarkable that a 
simple analytical representation correct to order r2 analytically yields a value for r* 
of - 0.4548, i.e. within 0.3 % of the correct value; naturally, the higher-order 
approximations are even more accurate. While the present results eliminate the need 
for direct numerical computations over most of the range of r, such results, too, are 
presented. Finally, the dependence of the bubble geometrical parameters, Weber 
number and added mass on r is determined. 

1. Introduction 
The question we wish to address is the following: what shape does a two- 

dimensional bubble take when it moves at constant speed through a? inviscid, 
incompressible fluid 1 Naturally, the shape will depend on U the speed, d the cross- 
sectional area of the bubble, (pb-p,) the difference between the uniform bubble 
pressure and the pressure at infinity, p the density of the fluid and the surface tension 
T .  The dependence on all these parameters can easily be shown to reduce to that on 
a single non-dimensional parameter r = 2(pb-pm)/pp - 1, a dimensionless pressure 
parameter related to the cavitation number. 

The above problem can arise in a physical context as follows. If a bubble is formed 
in a fluid of low viscosity and begins to move rapidly, the velocity can become 
uniform if the small drag force on the bubble exactly balances the external force on 
it, usually buoyancy. If the Reynolds number is sufficiently high, as it often is, the 
viscous effects can be shown to be confined to a narrow boundary layer on the surface 
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of the bubble (Moore 1959, 1965). Under these circumstances, the shape of the 
steadily moving bubble will be determined principally by the inviscid flow field. 

I n  the case of axisymmetric bubbles, Moore in the papers referred to  above, 
assumed the bubbles to be oblate ellipsoids of revolution and approximately 
computed their geometrical parameters. Apart from estimating the shapes of the 
bubbles, Moore showed that there is a maximum value of the Weber number (x 3.74) 
above which no steady axisymmetric solution exists. A much more complete attack 
on the problem was made by Miksis, Vanden-Broeck & Keller (1981) who computed 
axisymmetric bubble shapes over the whole range from r+co to close to the 
lower limit for r (z -0.31), when the bubble becomes toroidal. By this direct 
numerical attack on the full nonlinear free boundary problem not only were the 
earlier conclusions confirmed but a number of new interesting features were also 
revealed. More recent work in the area include the promising general Hamiltonian 
formulation of Benjamin (1987), the unsteady calculations of Baker & Moore (1989) 
for the two-dimensional case and the computations of vortex ring bubbles by 
Lundgren & Mansour (1991). The latter two are again direct numerical calculations 
based on boundary-integral methods. Although Meiron (1989) is concerned mainly 
with the stability question, he presents some steady axisymmetric shapes based on 
a collocation method. Interestingly, though, he does not present any results, as 
Miksis et al. (1981) did, showing visible negative curvature near the stagnation point 
for negative r. This is probably due to the general difficulty of computing in this 
range of the parameter, irrespective of method. 

A point to  be noted is that  most of the results currently available are numerical 
in nature with very few analytical results to hand. These few include Moore’s (1959) 
approximate result for the bubble shape at  small Weber numbers, and Walter & 
Davidson’s (1962) small-time solution for the two-dimensional case in the absence of 
surface tension. The main aim of this paper is to  obtain some analytical solutions 
that will hopefully clarify the nature of the problem in a way in which purely 
numerical solutions cannot. To this end we will consider the two-dimensional 
problem as the nonlinear free boundary problem is more likely to be tractable in this 
case. In  what follows we will show how the powerful technique of conformal mapping 
can be manipulated to  yield a number of interesting and valuable results. These 
include an accurate asymptotic solution for r+ 00, the exact solution for r = 0 
(earlier discovered by McLeod 1955) and a perturbation solution for r+ 0. Accurate 
numerical results are also presented for the whole range of r. Finally the dependence 
of the bubble perimeter and cross-sectional area and of the bubble Weber number 
and added mass on r is established. 

2. Formulation 
We shall work in a frame fixed to  the bubble and consider uniform flow past it (see 

figure 1).  Let the free-stream speed and pressure be U and p ,  respectively; let p ,  be 
the uniform pressure within the bubble. Assuming the fluid to be inviscid and the 
flow field to  be irrotational we need only deal with a potential flow. The boundary 
conditions at infinity are obvious as is the condition that the bubble profile be a 
streamline. The only remaining condition is that a t  the bubble surface the pressure 
forces must be balanced by the forces due to surface tension, i.e. 

Ap = p,-p = Tk 
where the pressure p refers to conditions in the fluid at the bubble surface and both 
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FIGURE 1. Steady, inviscid, incompressible flow past a bubble. The region exterior to the circle in 
the c-plane is mapped to the region exterior to the bubble in the physical plane. 

p and the curvature & are obviously functions of position. Combining (1) with 
Bernoulli's equation we find 

where 8 is the fluid speed on the bubble surface. All velocities are normalized by U ;  
more subtle is the normalization of all lengths by the lengthscale T / & P  as suggested 
by Miksis et al., which means that all computations need depend on a single 
parameter I', r = (pb -p , ) / (+pV) - 1 alone ; the surface tension T only changes the 
lengthscale. Equation (2) then takes the simple form 

q2 = K - r ,  (3) 

where q and K are the non-dimensional fluid speed and bubble surface curvature 
respectively. Thus the problem reduces to finding a velocity potential and bubble 
shape such that, in addition to satisfying the conditions at  infinity, the bubble profile 
is a streamline and (3) is satisfied on it. Obviously, like most free boundary problems, 
the problem is nonlinear and in general difficult. 

Working in the plane, it is natural to seek a solution based on conformal mapping. 
We therefore consider uniform flow of unit speed past a circle of radius R in the c- 
plane (figure 1) ; the complex potential i s  given by 

w(6) = (6+W/Y) (4) 

We now seek to map the exterior of the circle in 6 to the exterior of the bubble in 
the z-plane by choosing a general mapping function of the form 

Rn+la, 
2 = f(0 = c+ - 

n-1 s" 
where the coefficients a, and the radius R are to be determined. Note that the 
mapping goes into the identity as c-+ 00. Symmetry about the y = 0 plane requires 
that the a, be real. A little reflection shows that in a potential flow the bubble has 
also be symmetric about x = 0. Consequently the even a,, i.e. ones of the form a2k, 
have to vanish ; thus we are left with R and the odd coefficients a,, a3, a5 . . . . 

It will prove to be convenient to define the coefficients y, = m, for ?z = 1,3,5, . . . 
and to work with the y, rather than the a,. From (4) and ( 5 )  the fluid speed on the 
bubble surface defined by z = f[c = R exp (id)] is given by 

(6) 
2( 1 - COS 24) 

m m m  
q 2  = Idwldc12 - 

2yncos(n+1)++ c (C 2ykyk+,)cosn4 
12-2 k-1 

1-2 
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Before computing the curvature we first note from ( 5 )  for later reference that the 
bubble coordinates are given by 

( 7 4  
m 

a3 

y(q5) = R(sinq5- C a,sinnq5 
n-1 

The formula for the curvature K is 
x’y” - y’X’’ 
(x’2 + y‘”)” ’ K =  

where the primes refer to differentiation with respect to 4. From (7) and (8) it follows 
that the curvature is given explicitly by the formula 

t - (9) 

a3 a3 

l-c ky i  + 
m a3 

( k-1 n-1 

[( l + x y i  k-1 

m 
K =  

-x n-1 2yncos(n+i )d+C n-2 2 ( i l y k y k + n ) c o s n d ]  

One can now substitute (6) and (9) into the boundary condition (3) in order to 
determine the unknowns. It is better, however, to write (3) in the form K = q2+r, 
square both sides, cross-multiply, combine coefficients of the same harmonic and 
equate these coefficients to zero. We are then left with the following set of equations : 

i m  i n  co 

Note that A,, Bn, C, and D ,  vanish for odd n. The infinite system of equations 
above which needs to be solved for R ,  y l ,  y3,  y6 . . .  is nonlinear and will, in general, 
have to be solved numerically. A great advantage is, however, immediately 
apparent: no field equations have to be solved and the equations are at most 
algebraic in the unknowns. 

3. Analytical solutions 
In  this section we derive a number of analytical solutions to (10) for R and the 

coefficients yl, y3 ,  y5 . . . in the mapping function f(6). These results are valuable not 
only because they help to better understand the nature of the solution and its 
dependence on the parameters of the problem, but also because they can be used as 
starting solutions for numerically solving the full system of nonlinear equations. 
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3.1. Asymptotic solution for r+ 00 

We know that when the bubble is stationary it is circular in section with radius R 
equal to T / A p .  If the bubble then moves slowly the shape will be approximately 
circular with the same radius; in this circumstance r will be very large since 
r x 2AplpLin. We can, therefore, conclude that R - r1 and a, - 0 for r+ co. This 
suggests that we seek asymptotic expansions for the unknowns as r+ co in the form 

R-l = r + r o + r 1 r l + r 2 r 2 + . . . ,  ( 1 2 4  

yn = l - l a , + P b , +  ..., n = 1 , 3 , 5  ..., (12b) 
Rather than work with (10) it  is easiest to work directly with equations ( 6 )  and ( 9 )  

for q2 and K and the required boundary condition (3 ) .  Substituting the forms (12) 
into these three equations, expanding the terms for r+ 00 and equating coefficients 
of the various powers of r1 one can evaluate the unknowns in (12) .  The f i s t  
correction to the reciprocal of the radius, ro, turns out to be 2. Fortunately the only 
non-zero Y, to order r1 is y, ; and subsequently only m of the yn turn out to be non- 
vanishing to order I-*. Thus the solution to order I"-2 is 

As expected, for large T the bubble is approximately circular in section with a 
radius of I-,. To the next approximation it appears (Shankar 1992) as an ellipse 

Clearly the y-axis is the major axis, i.e. the bubble is flattened in the direction of 
flow. For smaller T there are, naturally, significant deviations from the elliptical 
section. In  order to extend the range of validity of the asymptotic solutions we now 
determine it to higher order. To this end we assume asymptotic expansions for the 
relevant unknowns in the form 

R-' = 1"+ ro + r 1 r 1  + F 2 r 2  + T 3 r 3  + r 4 r 4  + . . . , 
7, = P k ,  + P a n  + r 3 b ,  + T 4 c ,  + r 4 d ,  + . . . . 

(15a) 

(15b) 

Substituting (15)  into ( 3 )  and collecting and equating to zero the coefficients of each 
harmonic of the azimuthal angle $ ($ = arg (g)) one can determine the unknowns, 
viz. an,bn,c , ,d ,  etc. If this procedure had been attempted by hand it would have 
been formidable because of the complexity of the algebra involved. Now, however, 
using the symbolic manipulation program Muthematica, it has been possible to 
extend the expansion to order r5, leading to a representation accurate to very low 
values of r. We find that the unknown coefficients in (15)  are given by 

0(r1): ro = 2, k, = -8, k ,  = 0 ( n  > 1 ) ;  (16a)  

O ( r 2 ) :  r ,  = 8, a, =a, a, = -1 15, a n  = O  ( n >  3 ) ;  (16b) 
O ( r 3 )  : r2 = -#, b1 = -= 1359 b 3 = & ,  b5 =&, bn = O  (n > 5 ) ;  (l6C) 

1 c O ( r 4 ) :  r3 =2025, c, =-3, c 3 == 2825, 5 8616, c7 = -&, c, = 0 

( n  > 7 ) ;  ( 1 6 4  

(16e) 

0 V 5 ) :  r4=%3,  d,  =-, d3=-.-, 304552 d5 =-, a,=-, 
d -2 

9 - 10395' 
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FIGURE 2. Comparison of bubble shapes as given by the asymptotic solution to order P with the 
direct numerical solution. Note that to this scale the solutions overlap in the range considered. 
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,o(r-3), o(r-5) 
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X 

FIQTJRE 3. Comparison of the relative accuracies of the asymptotic solutions to various orders 
for large r. Solutions for r = 1.5. 

The bubble shape then takes on the representation 

~ ( 4 )  = R[( -:I-1 +:I-'+ b, r3 + c1 r4 +dl F5) cos # ++( -&I-' + b, I-3 +c, F4 

+a, 1-5) cos 3# +#, r 3  + c5 1-4 +a5 1-5) cos 5# 

+ + ( C , r 4 + d , I - 5 )  c o s 7 ~ + Q I - 5 d , C O S 9 q 5 ] + 0 ( r ~ ) ,  ( 1 7 4  
y(#) = R[( 1 +:I-' -$F2 - b  1 r3 - c , r 4  -dl F5) sin # -+( -&F2 + b, r3 

+ c3 F4 +d3 F5)  sin 34 -$(b5 I-3 + c,  r4 + d, r5) sin 54 

- 3 ( c , F 4 + d , F 5 )  sin7q5-iPd,sin9q5]+O(F6), (17b) 

R = r + 2  +3r1-$l-2+&-3+~41-4+0(l-5). ( 1 7 4  

Note that, starting with exp(i#), each higher order picks up a succeeding 
harmonic ; thus the structure of the solution remains very simple. In estimating the 
accuracy of any solutions obtained for the present problem a useful index is the 
maximum error in the satisfaction of the boundary condition (3) on the bubble 
surface; note that this is sufficient since the field equations and the conditions at 
infinity are automatically satisfied. Thus, henceforth the term 'error' will be used in 
this sense. An idea of the range of validity of the solution (17) derived for r+ co can 
be gained from figures 2 and 3. Comparison with the direct numerical solutions show 
that the O ( r 5 )  solution is quite satisfactory for r as low as 2,  when the error is 
approximately 0.0398 ; note that the error in the case of all direct numerical solutions 
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FIQURE 4. The shape of the bubble as given by the exact solution (19) for r = 0. 

(sometimes to be called ‘exact’) is less than 10-lo and often less than lop1,. When 
r = 1.5 the error is already as large as 0.213 but still the shape is well represented in 
figure 2. Figure 3 compares the shapes given by the lower-order solutions with the 
‘exact ’ solution for r = 1.5. It is seen that even the O ( r 3 )  solution is satisfactory for 
graphical accuracy. 

3.2 The exact solution for r= 0 
When the bubble excess pressure is exactly equal to the dynamic head, the 
parameter r takes the value zero. In this situation the boundary condition (3) 
implies a strict constraint on the bubble shape. For a symmetrical bubble stagnation 
points will occur on the x-axis. By (3) the curvature at  these points has to equal r; 
thus the curvature on the axis is positive, zero or negative as r is positive, zero or 
negative. In  particular the bubble has to be flat on the axis when r vanishes. One 
might thus hope for some simplification. 

Equations (1  1) do simplify as the only non-zero B, are B, and B,, which take the 
values 2 and - 2. Consequently the D,  simplify, the only non-vanishing ones being 
Do, D, and D,, which take the values 6, -8 and 2. Thus (11) simplifies considerably 
but still appears formidable. However, computations on the full equations for very 
small values of r suggest a very nice feature : that 

R + f ,  yl+-$, y3+-$ ,  yn+O (n > 5 ) .  

We are, therefore, led to the conjecture that for r= 0 

(18) 2 R = +, y1 = -3 ,  y3  = -8 ,  Y, = 0 (n > 5 )  

It is not difficult to show that (18) does indeed represent the exact solution to the 
infinite set of equations (11)  for r= 0. The corresponding bubble shape is given 
parametrically by 

x = +[+cosq5-&cos3q5], y = +[gsinq5+&sin3q5]. (19a, b )  

When I first discovered this (Shankar 1992) I believed that it was the first exact 
solution for the shape of a translating bubble. However, a referee brought to my 
notice the fact that McLeod (1955) had discovered this solution almost 35 years 
earlier! His method, apparently devised for the case r = 0 alone, is quite different. 
The above exact solution is all the more remarkable in that it includes the effects of 
surface tension. The shape of the bubble is shown in figure 4; the bubble has an 
aspect ratio of 9 and is flat on the x-axis as expected. 
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FIGURE 5. Bubble shapes given by the small-r solution correct to order re compared with the 
'exact' solution. 

3.3. An approximate solution for r+ 0 
With the exact solution for r = 0 to hand it is natural to seek a perturbation solution 
for T+ 0 around the known solution. To this end we assume the following forms for 
the unknowns as r+O: 

R = ro(1+rr l+Pr2+  ...), y1 = ylO(l+I'a,+P/3,+ ...) (2% b)  
y3  = y 3 0 ( l + ~ a 3 + P p , +  ...), yn = ra,+P/3,+ ... (n 2 5 ) ,  (20c,d) 

where ro = $, ylo= -8 and y30 = -6. These forms can now be substituted into the 
expressions (12) for A,, B,, C ,  and D ,  retaining terms till only the first order in r. 
These can then be substituted into (1  1) to obtain equations for the first corrections 
rl and a,. Unfortunately this leads to an infinite system which is a t  least 
hexadiagonal. Instead, we obtain an approximate solution by truncating the system : 
retain only y l ,  y 3 ,  y5 ,  y7 and ye, assume all other coefficients to vanish and solve only 
the first six equations for the six unknowns. In  this manner we find the first six 
equations to be 

-24184 -45360 5022 -65124 -13122 0 -39852 

6940 2268 3726 45684 43254 8019 -14256 

6496 18576 -3888 51192 -39042 -35964 7344 

60 - 24 52 858 808 -630 - 32 

136 0 54 -6156 11286 8856 -108 

4 0 0 -486 -2700 4950 0. 

This system of linear equations can be solved to yield 

a1 = --, a 3 = - 4 4  27, a - -1 243, a, = a s  = 0, r 1 =-2 81' 19 

Thus to first order in r we find the following approximate solution as r + O ;  

R = & ( I - "  *J)+. . . ,  y 1 -  - -$(1-" 2 7 0  + * . * ,  (23 a-c) 
y - -)(1-44 270+ ..., y5 = &r+ ..., y7 = 0 ( r 2 ) ,  ys = O ( P ) .  (23d-f) 

3 -  

Naturally this solution will not be accurate unless 14 + 1 .  I n  order to obtain a 
solution with a sufficiently large range of applicability we can extend the above 
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various orders. Comparison with the exact solution for r = -0.3. 

procedure to higher order. This has been carried out to order T6 ; it is found that each 
order picks up only one extra harmonic without changing the lower-order terms. 

Any doubts that one may have had over the value of the effort expended are likely 
to be dispelled by a glance at  the results shown in figure 5.  The perturbation solution 
obtained for r-t 0 gives very satisfactory bubble shapes from r = 0.5 (error x 
0.0043) down to r = -0.4536 (error x -0.00025) close to pinch-off when the bubble 
ceases to be simply connected. Even for r = 1.0, when the error is large (x 0.328), 
the shape obtained is fair as figure 5 shows. It must be emphasized that an analytical 
representation has been obtained that not only has a large range of applicability but 
is capable of describing strongly necking bubbles which are notoriously difficult to 
compute directly. 

Two parameters of geometrical interest are the bubble semi-major axis ym and the 
bubble semi-minor axis x,. In terms of the mapping coefficients they are given, to 
O ( P ) ,  by the formulae 

/ 1 5  \ 

with R and the y n  evaluated from the higher-order solution. Note that to O ( P )  these 
are nth-order polynomials in r. We remark that the solution of the polynomial 
equation x, = 0 yields a value for the pinch-off value of r, r*, when the opposite 
sides of the bubble touch. The sixth-order solution leads to a critical value of 
-0.4538, within 0.03% of the direct numerical estimate of -0.4537, while the 
fourth-order solution yields r* x -0.4525. 

In  order to compare the accuracies likely to be obtainable using the solution for 
0 valid to different orders, we compare (figure 6 )  solutions correct to O ( r 2 ) ,  O ( r 4 )  

and O ( P )  with the exact solution for r = -0.3. Even though the y-scale is greatly 
expanded the solutions merge except for the O ( P )  solution; and even the latter is 
tolerable. In  summary the r+O solutions obtained here are accurate over a large 
range of r. 

4. Numerical solutions and bubble parameters 
Even a casual inspection of equations (10) will make obvious the need to seek 

numerical solutions if one desires great accuracy for arbitrary values of r. The 
iterative procedure that we have used is as follows. Newton's method is used to solve 
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FIGURE 7 .  The variation of the coefficients in the mapping function with r 
r 

R 
Yl 
Y3 

Y5 

Y7 

Y9 

Y11 

Yl3  

Y15 

717 
Y19 

r = -0.4 r = 1.0 r = 4.0 

0.324 
-0.886 
-0.215 
-8.78 x 10-3 
-3.03 x 10-4 

- 8.48 x 10-9 

- 1.95 x 10-13 

-9.63 x 10' 
-2.91 x lo-' 

-2.42 x lo-'' 
-6.77 x lo-'' 

0.287 
-0.364 
-2.79 x 10-2 

8.70 x 10-4 
-2.33 x 10-5 

5.76 x 10-7 

3.07 x lo-'" 

1.48 x 10-13 
-3.19 x 10-15 

- 1 . 3 5 X  lo-' 

-6.81 x lo-'' 

0.162 
-0.141 
-3.48 x 10-3 

8.41 x 10-5 
- 1.77  x lo-' 

3.45 x 10-8 
-6.39 x 10-"I 
1.14 x lo-" 

-2.00 x 10-13 
3.44 x 10-15 

-5.85 x 1 0 4 7  

TABLE 1. R and the first ten significant coefficients for three values of r 
correct to 3 significant figures 

the system of nonlinear equations, using the approximate solutions of the previous 
section as starting solutions. Assuming that the solution is known for r = To, change 
r be a small amount AT. The expressions {eZk(R, yl, y3, ..., yzn-J ,  k = 0, 1,2, ..., n} 
representing (1  1 )  will now not vanish. By making small changes Ayk in turn, the 
terms of the generalized gradient ae,/ay, can be evaluated. One can then compute the 
corrections Aym needed to reduce the values of the e j .  Repeating the procedure one 
can converge to the solution for I" = r, +AT. This method did indeed work for all 
values of r even if the step size A r  had at times to be made very small. 

The general nature of how the first few yn  and R vary with r is shown in figure 7. 
As shown in $3.1 all of these vanish as r-t 00. R ,  y1 and y 3  all increase in magnitude 
as r+- 0 until at r = 0 they take the values f ,  -$ and -2. A t  this point all the other 
coefficients vanish. As r decreases below 0 the magnitudes of R ,  y1 and y3 continue 
to increase, but now the other coefficients also become significant. Note that it is the 
decrease of y1 that is the principal cause of the necking of the bubble. Table 1 lists 
the first ten non-vanishing coefficients for three values of r. 

Some bubble shapes for positive r are shown in figure 8. When r = 8 the bubble 
is almost circular in section but a t  T =  4 the deviations are already apparent. 
Initially both x, and ym, the minor and major axes, increase with r; but beyond 
r E 1, x, decreases while ym continues to increase. This can be seen quantitatively in 
figure 9. Comparison with the axisymmetric calculations of Miksis et al. (1981) shows 
that in general two-dimensional bubbles are much smaller than axisymmetric ones 
at  the same value of r. Two other geometrical parameters of interest are the 
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FIGURE 8. The shape of the bubble as r decreases. Only the upper half of the bubble is shown 
in each case. 
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FIGURE 9. The dependence of x, and y,, the minor and major axes of the bubble, on r. 

The bubble ceases to be simply connected when rz -0.4537. 
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FIQURE 10. The variation of the bubble perimeter 9, area d ,  Weber number W ,  
and added mass A'& with r. 

perimeter Y and the cross-sectional area d ; their dependence on r is indicated in 
figure 10. 

Two quantities of dynamical interest are the Weber number W and the added 
mass A',. Once the area d is computed the Weber number can be computed from 
the formula 

(25) 

For the added mass we refer to Milne-Thompson (1960, pp. 238, 240). Thus, in his 
notation, when the potential @ has, for r + co , the expansion 

w = p V ( d / n ) i / T  = 4 ( d / n ) i .  

@ = Ux+Az / r2+By / r2+  ..., (26) 

(27 ) 

the added mass Aa is given by 

A?', = (27ul- V U ) p / U ,  
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FIGURE 11.  Non-convex bubble shapes for negative r. 

and so for our bubble motion the dimensionless added mass in our notation is given 
by 

Aa = 2n(R2-a,)-dd.  (28) 

The dependence of the Weber number and added mass on r is shown in figure 10. 
As in the axisymmetric case and as conjectured in Shankar (1991) there is a 
maximum Weber number above which no steady solution exists. This maximum is 
approximately 1.11, as opposed to 3.23 in the axisymmetric case. The added mass 
has to vanish as r-t co since a circular section has zero added mass. As r decreases, 
the increasing distortion of the bubble in the y-direction causes A& to increases 
rapidly. 

Our experience has been that it is very easy to compute to great accuracy for 
r > 0. But when the parameter becomes negative the computations become 
increasingly difficult. It appears that this problem is a general one. Miksis et al. 
clearly indicate their difficulties in this region and stop their computations well short 
of the minimum possible T corresponding to pinch-off; moreover, their bubble shapes 
show fore-aft asymmetry. Meiron (1989) does not display any bubble shapes which 
clearly show necking. With the method adopted here i t  was possible to compute 
accurately down to pinch-off but the step size A T  had at  times to be reduced to lo-*. 
Figure 11 shows the non-convex bubble shapes that develop for negative r. While 
the major axis of the bubble changes little, necking causes the minor axis to reduce 
monotonically until the sides of the bubble touch; the value of r at  pinch-off (r*) 
is approximately -0.4537; beyond this value the bubble can no longer be simply 
connected. The corresponding value in the axisymmetric case has been estimated by 
Miksis et al. to be about -0.31; their estimate was based on an extrapolation from 
computations done up to r = -0.251. 

5. Discussion and conclusion 
Our aim was to obtain analytical descriptions of the bubble shape over as large a 

range of r-values as possible. The results of 53.1 cover the range 2 < r< ao, 
corresponding to comparatively slow to moderately fast bubble speeds. The results 
obtained in $3.3 give bubble shapes in the range -0.4537 < Tf  0.75, for very 
rapidly moving bubbles down to the condition where the necking bubble ceases to 
exist as a single entity. With some sacrifice in accuracy the results can be used in the 
extended ranges r < 1.0 and r 2 1.5. It is somewhat surprising, but gratifying, that 
the asymptotic expansions of extremely simple form derived here cover almost the 
entire range of possible r-values. 

A summary of the range covered by the present results is contained in figure 12. 
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FIGURE 12. (a) The dimensions of the semi-major and semi-minor axes of the bubble as given by 
the large-r solution to order P:  ( b )  Comparison of the semi-major and semi-minor axes of the 
bubble a8 given by the small-r solution with those of the exact solution. 

Figure 12 (a) shows the dimensions of the semi-major axis ym and the semi-minor axis 
x, of the bubble as a function of r for r+ a. The corresponding results for r+ 0 are 
shown in figure 12(b). While the range covered by the two solutions is very great it 
may be noted that neither picks up the maximum value of z, around Tx 1.3. 
Possibly, taking even higher-order terms in each expansion would lead to greater 
ranges of validity, sufficient to pick up the maximum. 

We wish to  remark on an issue that is relevant to direct numerical computation. 
With the analytical approach used here it was possible to estimate the 'error ' in the 
computed solutions. A feature that was noted and has been indicated above is that 
even with comparatively large errors on the boundary the bubble shape tends to 
appear reasonable. Conversely, it is likely that a reasonable looking bubble can have 
large errors associated with it. This is particularly serious for direct numerical 
computations. Thus in Miksis et al. (1981) the bubble shapes shown in their figure 2 
show slight fore-aft asymmetry; if these are not due to graphing errors the associated 
solutions are not likely to be accurate. 

The asymptotic solutions obtained here should be useful in any viscous analysis of 
two-dimensional bubble shapes. Note in particular that a good description of necking 
bubbles has been obtained for r < 0, a facility still not available in the axisymmetric 
case. The asymptotic results can also be used for approximate, quasi-steady 
computations of unsteady bubble motions. Once again it is the simplicity of the 
analytical description that should be of help. 

We conclude by emphasizing that the present asymptotic results eliminate the 
need for direct numerical computations over a large range of r unless extremely 
great accuracy is required. The large-r solution was possible because it was known 
that the bubble had to be approximately circular in section when it was slow moving. 
The solution for small r became feasible once the exact solution for r= 0 was 
rediscovered. Of particular interest are the solutions in the range r < 0, when the 
bubble begins t,o neck. It is remarkable that the O ( P )  solution is able to give such 
a good estimate of the pinch-off value of r, r* x 0.4537, when the bubble ceases to 
be simply connected. This range of r, r < 0, is very difficult to compute. In fact, in 
the axisymmetric case, the value of P(x--0.31) has been found only by 
extrapolation. Thus it may not be an extravagant claim that the conformal mapping 
technique and the resulting exact and asymptotic solutions have led to a rich 
bounty of valuable and useful results in bubble dynamics. 
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